Fenebrutinib, a Potent, Highly Selective, Noncovalent BTK Inhibitor for the Treatment of Multiple Sclerosis

AR Johnson, 1 C Harp, 1 J Yu, 1 A Goodyear, 1 JJ Crawford 1

¹Genentech, Inc., South San Francisco, CA, USA

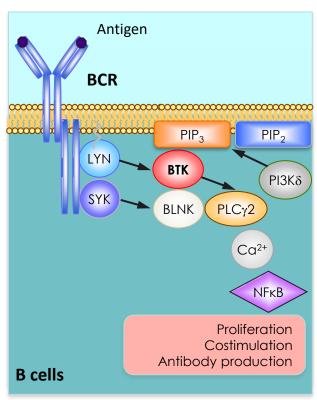
Presented at MSVirtual2020, the 8th Joint ACTRIMS-ECTRIMS Meeting, September 11-13, 2020

Presentation Number P0338

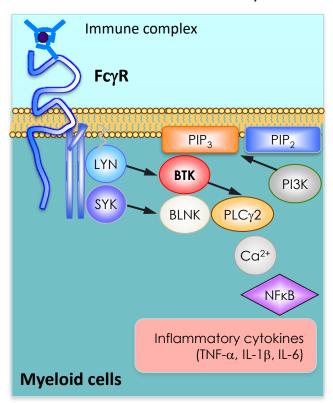
Disclosures

A Johnson is employed by Genentech, Inc., a Member of the Roche Group.

C Harp is employed by Genentech, Inc., a Member of the Roche Group.


J Yu is employed by Genentech, Inc., a Member of the Roche Group.

A Goodyear is employed by Genentech, Inc., a Member of the Roche Group.

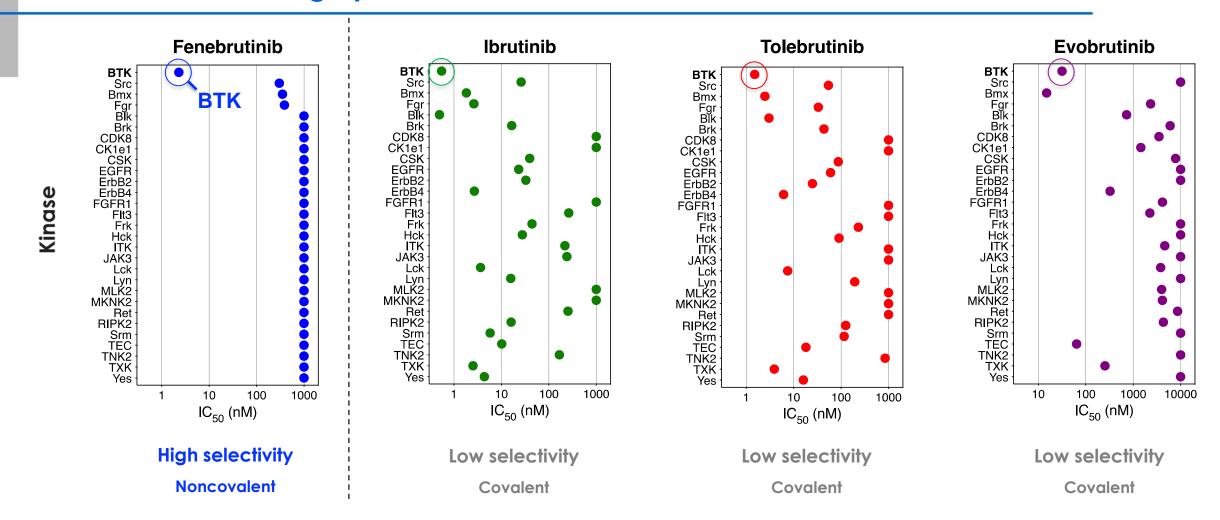

J Crawford is employed by Genentech, Inc., a Member of the Roche Group.

Bruton's tyrosine kinase (BTK) is a target in activated immune cells in MS

Adaptive immunity

Innate immunity

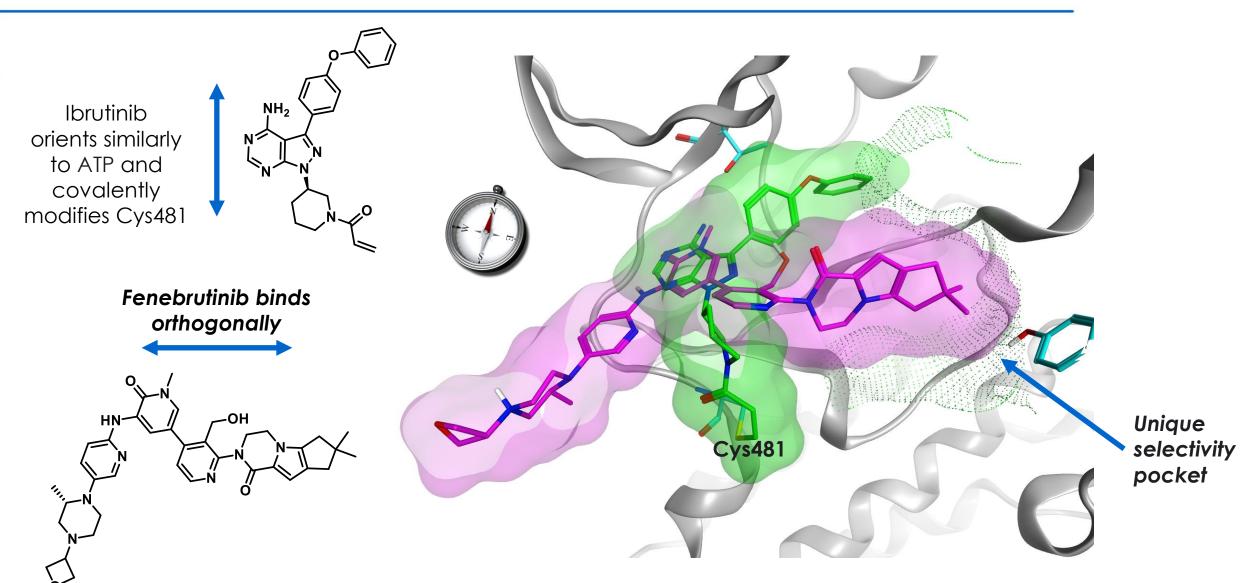
BTK


- Non-receptor tyrosine kinase¹
- In B cells and myeloid cells (macrophages, microglia)^{2,3}
- Key role in BCR and F_cR signaling¹⁻⁴
- Adaptive and innate immunity⁴
- Target in MS (activated B and myeloid cells)⁵

Fenebrutinib is a potent, highly selective, noncovalent BTK inhibitor for MS

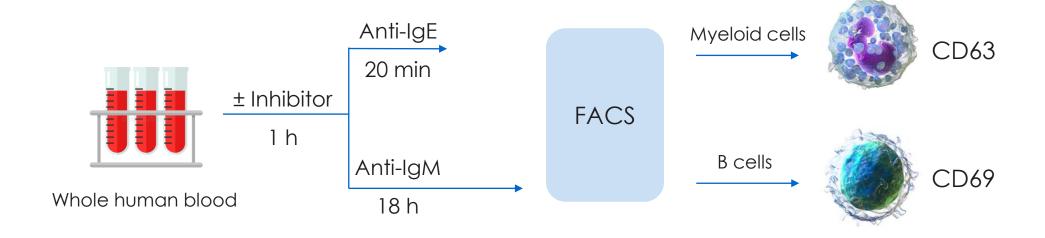
Fenebrutinib (GDC-0853)	lbrutinib (PCI-32765)	Tolebrutinib (PRN-2246, SAR442168)	Evobrutinib (M2951, MSC 2364447)	
Phase 3	Launched	Phase 3	Phase 3	
MS	Oncology	MS	MS	
N N N N N N N N N N N N N N N N N N N	H ₂ N N N N N O	H ₂ N N O N O	H ₂ N H N N N	
Noncovalent, reversible	Covalent, irreversible	Covalent, irreversible	Covalent, irreversible	
BTK IC ₅₀ , 2 nM	BTK IC ₅₀ , 1 nM	BTK IC ₅₀ , 1 nM	BTK IC ₅₀ , 32 nM	
High selectivity	Low selectivity	Low selectivity	Low selectivity	

BTK IC₅₀ values determined *in vitro* using a kinase activity assay that monitors phosphorylation of a peptide substrate with ATP at its apparent K_m . BTK, Bruton's tyrosine kinase; IC₅₀, half maximal inhibitory concentration; MS, multiple sclerosis.


Fenebrutinib is highly selective for BTK over other kinasesa,b

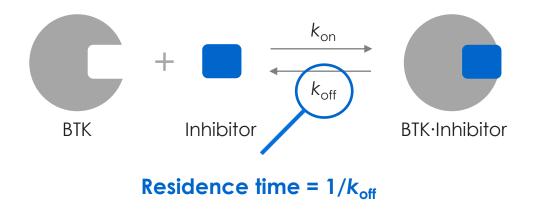
Fenebrutinib clinical safety data thus far, relative to other BTKi, appear to confirm the importance of high selectivity.

^aTo identify off targets, inhibitors were screened at 1 μM against 219 kinases in the SelectScreen panel (ThermoFisher); evobrutinib was also tested at 10 μM due to its weaker BTK IC₅₀. Of 218 off-target kinases tested, the following number of kinases were inhibited by >50%: fenebrutinib, 3; ibrutinib, 31; tolebrutinib, 19; evobrutinib, 18 (10 μM), 3 (1 μM); ^bTo determine potencies, IC₅₀ values were compared against those of kinases that were inhibited by >50% in the initial large panel screen. BTK, Bruton's tyrosine kinase; BTKi, Bruton's tyrosine kinase inhibitor; IC₅₀, half maximal inhibitory concentration.


Fenebrutinib's high selectivity for BTK is due to its unique binding mode

BTK, Bruton's tyrosine kinase; Cys, cystein.

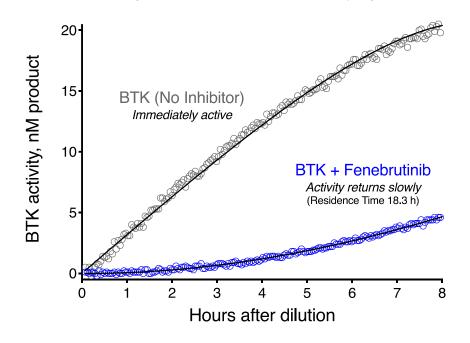
Crawford JJ, et al. J Med Chem 2018;61:2227-2245.


Fenebrutinib potently inhibits myeloid and B-cell activation in whole blood

Whole human blood assay	Fenebrutinib ¹	Ibrutinib ¹	Tolebrutinib ²	Evobrutinib ³
Myeloid cell CD63 IC ₅₀ , nM	31	171	166	1660
B cell CD69 IC ₅₀ , nM	8	12	10	84

Fenebrutinib dissociates slowly from BTK, which may positively influence efficacy

Inhibitor dissociation and residence time



Fast dissociation \rightarrow large $k_{off} \rightarrow$ short residence time

Slow dissociation \rightarrow small $k_{off} \rightarrow$ long residence time

Measuring fenebrutinib dissociation in vitro

Activity recovery experiment¹ (room temperature, ATP 45 μ M)

Fenebrutinib's residence time *in vivo* may be <18 h (since cells have higher ATP levels than used here), but its slow dissociation from BTK may positively influence efficacy.

BTK, Bruton's tyrosine kinase; $k_{\rm off}$, dissociation constant; $k_{\rm on}$, association constant.

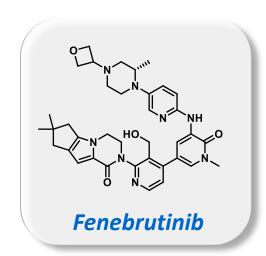
1. Crawford JJ, et al. J Med Chem 2018;61:2227–2245.

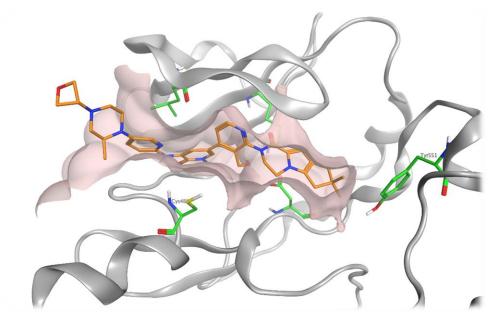
A noncovalent BTK inhibitor may be safer than a covalent BTK inhibitor

Covalent BTK inhibitor

- Irreversible binding to BTK and off targets
- Irreversible binding to off targets may impact safety¹

$$BTK + I \xrightarrow{k_{on}} BTK \cdot I \xrightarrow{Covalent} BTK \sim I$$


Off target + |
$$\underset{k_{\text{off}}}{\longleftarrow}$$
 Off target · | $\underset{k_{\text{off}}}{\overset{\text{Covalent}}{\longleftarrow}}$ Off target ~ |


- Noncovalent BTK inhibitor
 - Reversible binding to BTK
 - Slow dissociation kinetics may positively influence efficacy
 - No irreversible binding to compromise safety

BTK + I
$$\xrightarrow{k_{on}}$$
 BTK·
 k_{off}

Fenebrutinib has best-in-class potential in MS

- Fenebrutinib is a highly selective, noncovalent BTK inhibitor
- Fenebrutinib may be safer than less-selective, covalent BTK inhibitors
- Fenebrutinib has best-in-class potential in MS

