Demographics and Baseline Disease Characteristics of Black and Hispanic Patients With Multiple Sclerosis in the CHIMES Trial

Lilyana Amezcua,1 Annette F Okai,2 Anne H Cross,3 Nancy L Monson,4 Ben W Thrower,5 Anthony T Reder,6 Jeffrey B English,7 Gregory F Wu,3 Evanthia Bernitsas,8 Shereen Yap,9 Jugena Ndrio,9 Jinglan Pei,9 Ellen M Mowry,10 Fabio Magrini9, Juan Acosta9 and Mitzi J Williams11 on behalf of the CHIMES investigators

1Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 2North Texas Institute of Neurology and Headache, Plano, TX, USA; 3Washington University School of Medicine, St Louis, MO, USA; 4University of Texas Southwestern Medical Center, Dallas, TX, USA; 5Crawford Research Institute, Shepherd Center, Atlanta, GA, USA; 6University of Chicago Medicine, Chicago, IL, USA; 7Multiple Sclerosis Center of Atlanta. Atlanta, GA, USA; 8Wayne State University School of Medicine, Detroit, MI, USA; 9Genentech, Inc., South San Francisco, CA, USA; 10Johns Hopkins University, Baltimore, MD, USA; 11Joi Life Wellness MS Center, Atlanta, GA, USA

CHIMES (NCT04377555)

Thursday, June 2, 2022

Presented at: Consortium of Multiple Sclerosis Centers (CMSC) Annual Meeting 2022; June 1–4, 2022; National Harbor, MD.
Disclosures

L Amezcua reports personal compensation for consulting, speaking or serving on steering committees or advisory boards for Biogen Idec, Novartis, Alexion Pharmaceuticals, Genentech, Inc., EMD Serono and AbbVie and research support from the National Multiple Sclerosis Society, NIH NINDS and Biogen.

A F Okai has received consulting fees from Alexion, Biogen, Bristol Myers Squibb, EMD, Serono, Greenwich Biosciences, Novartis, Roche, Genentech, Inc., Sanofi Genzyme and TG Therapeutics and serves on the speakers bureau for Alexion, Biogen, EMD Serono, F. Hoffmann-La Roche Ltd, Genentech, Inc., and Sanofi Genzyme.

A H Cross has, in the past year, received fees or honoraria for consulting for Biogen, EMD Serono, F. Hoffmann-La Roche Ltd, Genentech, Inc., Horizon Therapeutics, Janssen (J&J), Novartis and TG Therapeutics.

N L Monson has received consulting fees from EMD Serono and Genentech, Inc.; is a founder of TGM Life Sciences; and holds patent US 8,394,583 B2 on MSPrecise™, a diagnostic tool for predicting conversion to multiple sclerosis.

B W Thrower serves on the speakers bureau for Biogen, Horizon Therapeutics, Genentech, Inc., and Bristol Myers Squibb.

A T Reder has received consulting fees from Bayer, Biogen, F. Hoffmann-La Roche Ltd, Genentech, Inc., Merck Serono, Novartis and TG Therapeutics; is an editor for MedLink; and has received unrestricted grant support from Bayer, Biogen, F. Hoffmann-La Roche Ltd, Genentech, Inc., Mallinckrodt, Merck Serono and Novartis.

J B English has received consulting fees from Biogen, EMD Serono, Sanofi Genzyme, Bristol Myers Squibb and IT Therapeutics and contracted research support from Biogen, EMD Serono, Novartis and Genentech, Inc., and serves on the speakers bureau for Biogen, EMD Serono, Sanofi Genzyme and Bristol Myers Squibb.

G F Wu has received honoraria for consulting from Novartis and Genentech, Inc., and research funding from Biogen, EMD Serono and F. Hoffmann-La Roche Ltd.

E Bernitsas has received grant support from F. Hoffmann-La Roche Ltd, Genentech, Inc., Sanofi Genzyme, MedImmune, Novartis, Merck Serono, Chugai, Mallinckrodt and TG Therapeutics and consulting fees/honoraria from Biogen, Merck Serono, Celgene and Genentech, Inc.

S Yap is an employee of Genentech, Inc., and a shareholder of F. Hoffmann-La Roche Ltd.

J Ndrio is an employee of Genentech, Inc., and a shareholder of F. Hoffmann-La Roche Ltd.

J Pei is an employee of Genentech, Inc., and a shareholder of F. Hoffmann-La Roche Ltd.

E M Mowry has received grant support from Biogen, Genentech and Teva and royalties for editorial duties from UpToDate and has participated on data safety monitoring boards for NIAID and TRIM trials.

F Magrini was an employee of Genentech, Inc., at the time of the study.

J Acosta is an employee of Genentech, Inc., and a shareholder of F. Hoffmann-La Roche Ltd.

M J Williams has received consulting fees from AbbVie, Biogen, Bristol Myers Squibb, EMD Serono, Genentech, Inc., Novartis and Sanofi Genzyme.

Sponsored by F. Hoffmann-La Roche Ltd; editorial assistance was provided by Health Interactions, Inc., USA, and funded by F. Hoffmann-La Roche Ltd.
Background

MS disease characteristics vary among racial and ethnic groups

• The demographics of multiple sclerosis (MS) in the United States are changing \(^1,2\)
 - Retrospective studies have shown incidence of MS in White people ranging from 6.9% to 9.3%, in Black people from 10.2% to 12.1% and in Hispanic people from 2.9% to 8.2% per 100,000 \(^3\)

• Black/African American (Black) and Hispanic/Latino (Hispanic) patients with MS have faster disease progression and greater eventual disability than White patients \(^4–7\)
 - Black and Hispanic patients are more likely to present with optic neuritis, transverse myelitis or cerebellar dysfunction \(^7–9\)
 - Black patients may have greater B-cell–mediated pathology, as evidenced by a higher immunoglobulin G index \(^10–13\)

• Differences in clinical characteristics in Black and Hispanic patients with MS may be the result of genetic, environmental, socioeconomic and/or cultural factors, \(^3\) any of which may lead to variation in disease severity \(^14\)

Background

Lack of diversity in clinical trials and barriers to Black and Hispanic participation

Despite differences in MS clinical characteristics, Black and Hispanic patients are vastly underrepresented in clinical trials

Race and ethnicity are underreported in MS clinical trial publications,\(^1\) but available data show underrepresentation of Black and Hispanic patients\(^a\)

- Black patients: 2.3–16.1%
- Hispanic patients: 7.0–7.5%

Barriers to healthcare and study participation are more common for Black and Hispanic patients\(^3^–^5\)

- Not invited to participate due to unconscious bias based on racial stereotypes and structural racism
- Lack of trial awareness and access due to location or insurance status
- Sociocultural factors, such as acculturation and perceptions
- Concern about risk to employment and legal status
- Socioeconomic status and education
- Financial and logistic burden on patients
- Mistrust of research, including concern about receiving poor-quality care or being taken advantage of
- Restrictive inclusion/exclusion criteria

\(^a\)Includes data from four published, multinational, randomized controlled trials that reported specifically on efficacy of MS disease-modifying treatments in Black or Hispanic patients.\(^2\)

The objective of the CHIMES trial is to investigate the efficacy and safety of ocrelizumab (OCR) in Black and Hispanic patients with relapsing MS (RMS).

The CHIMES trial (NCT04377555) is an open-label, single-arm, Phase IV clinical study.

OCR is a humanized monoclonal antibody that selectively targets CD20+ B cells and reduces the rates of disease activity and progression in patients with RMS or primary progressive MS.

Self-identified Black and Hispanic patients aged 18 to 65 years with RMS and an expanded disability status scale (EDSS) score of ≤5.5 were included.

Methods

CHIMES study design: timeline

1st year: study

<table>
<thead>
<tr>
<th>Screen</th>
<th>12 weeks</th>
<th>24 weeks</th>
<th>48 weeks</th>
<th>72 weeks</th>
<th>96 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8 to 0 weeks</td>
<td>OCR 300mg</td>
<td>OCR 300mg</td>
<td>OCR 600mg</td>
<td>OCR 600mg</td>
<td>OCR 600mg</td>
</tr>
<tr>
<td>0 to 24 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 to 48 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 to 72 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73 to 96 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2nd year: extension

- **OCR infusion**
- **History and physical examination**
- **Blood draw**
- **MRI**

Primary endpoint: disease activity, defined by the proportion of patients achieving no evidence of disease activity-3 (NEDA-3: clinical relapses, confirmed disability progression and MRI activity) at the end of Year 1.
Methods

CHIMES study design: addressing barriers to diversity in clinical trials

Identifying study centers that serve diverse communities

North America
 United States
 Puerto Rico

Africa
 Kenya

Addressing language and communication barriers

Addressing financial, time and logistic burdens on patients

Compensation for loss of earnings
 Ride Health patient transportation
 Childcare reimbursement
 Travel and meal reimbursement
 Flexibility in screening and visit schedule windows
Results

Demographic and baseline characteristics

BMI, body mass index.

a3 patients are of Hispanic ethnicity and identify their race as Black.

<table>
<thead>
<tr>
<th></th>
<th>Black patients n=113</th>
<th>Hispanic patients n=69</th>
<th>All patients N=182</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), years</td>
<td>36.3 (10.4)</td>
<td>34.2 (10.5)</td>
<td>35.5 (10.5)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td>87 (77.0)</td>
<td>44 (63.8)</td>
<td>131 (72.0)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td>0</td>
<td>69 (100)</td>
<td>69 (37.9)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>110 (97.3)</td>
<td>0</td>
<td>110 (60.4)</td>
</tr>
<tr>
<td>Not Hispanic</td>
<td>3 (2.7)</td>
<td>0</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td>0</td>
<td>63 (91.3)</td>
<td>63 (34.6)</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>0</td>
<td>2 (2.9)</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td>Blacka</td>
<td>113 (100)</td>
<td>3 (4.3)</td>
<td>116 (63.7)</td>
</tr>
<tr>
<td>White</td>
<td>0</td>
<td>63 (91.3)</td>
<td>63 (34.6)</td>
</tr>
<tr>
<td>Multiple</td>
<td>0</td>
<td>1 (1.4)</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>BMI, n</td>
<td>112</td>
<td>69</td>
<td>181</td>
</tr>
<tr>
<td>Mean (SD), kg/m²</td>
<td>31.64 (8.00)</td>
<td>29.86 (6.32)</td>
<td>30.96 (7.44)</td>
</tr>
</tbody>
</table>

Younger age and a higher BMI were observed in Black and Hispanic patients in the CHIMES trial when using the OPERA trial population¹ as a benchmark.
Results

Baseline MS disease history and previous DMT use

<table>
<thead>
<tr>
<th></th>
<th>Black patients n=113</th>
<th>Hispanic patients n=69</th>
<th>All patients N=182</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since symptom onset, mean (SD), years</td>
<td>5.15 (5.71)</td>
<td>4.60 (5.52)</td>
<td>4.94 (5.63)</td>
</tr>
<tr>
<td>Time since RMS diagnosis, mean (SD), years</td>
<td>2.87 (4.62)</td>
<td>2.91 (4.43)</td>
<td>2.89 (4.54)</td>
</tr>
<tr>
<td>Baseline EDSS (rounded), mean (SD)</td>
<td>2.51 (1.45)</td>
<td>2.01 (1.29)</td>
<td>2.32 (1.41)</td>
</tr>
<tr>
<td>No. of relapses in the past 24 months, mean (SD)</td>
<td>0.77 (0.58)</td>
<td>0.64 (0.51)</td>
<td>0.72 (0.56)</td>
</tr>
<tr>
<td>Patients taking previous DMT, n (%)</td>
<td>41 (36.3)</td>
<td>27 (39.1)</td>
<td>68 (37.4)</td>
</tr>
<tr>
<td>Duration between end of last DMT to initiation of OCR treatment, mean (SD), months</td>
<td>10.20 (17.96)</td>
<td>7.23 (11.03)</td>
<td>9.02 (15.55)</td>
</tr>
</tbody>
</table>

Shorter duration of disease and time to diagnosis were observed in Black and Hispanic patients in the CHIMES trial when using the OPERA trial population as a benchmark.

DMT, disease-modifying therapy; EDSS, expanded disability status scale; MS, multiple sclerosis; OCR, ocrelizumab; RMS, relapsing multiple sclerosis.

Results

Disease characteristics for brain MRI assessments at baseline

<table>
<thead>
<tr>
<th></th>
<th>Black patients n=113</th>
<th>Hispanic patients n=69</th>
<th>All patients N=182</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of T1 Gd-enhancing lesions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>111</td>
<td>68</td>
<td>179</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>2.30 (5.05)</td>
<td>1.21 (2.47)</td>
<td>1.88 (4.29)</td>
</tr>
<tr>
<td>No. of T2 lesions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>113</td>
<td>68</td>
<td>181</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>49.75 (32.89)</td>
<td>48.44 (29.56)</td>
<td>49.26 (31.60)</td>
</tr>
<tr>
<td>Volume of T2 lesions, cm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>113</td>
<td>68</td>
<td>181</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>21.36 (20.68)</td>
<td>14.87 (11.88)</td>
<td>18.92 (18.13)</td>
</tr>
<tr>
<td>Normalized brain volume, cm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>112</td>
<td>68</td>
<td>180</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>1506.77 (94.23)</td>
<td>1533.69 (95.47)</td>
<td>1516.94 (95.34)</td>
</tr>
</tbody>
</table>

Greater T2 burden was observed in Black and Hispanic patients in the CHIMES trial when using the OPERA trial population\(^1\) as a benchmark.

Gd, gadolinium.
Conclusions

- Underrepresentation of Black and Hispanic patients in clinical trials limits the understanding of MS pathophysiology and treatment

- Data from the CHIMES trial, the first MS trial to focus on Black and Hispanic patients, indicate some differences in demographics and baseline disease characteristics between Black and/or Hispanic and White patients
 - Findings may improve the current understanding of MS disease biology, treatment response and clinical trial participation
Supplemental
In addition to addressing barriers, the CHIMES study will investigate a unique set of biomarkers, including B- and T-cell surface markers.

Imaging
- Volume/area change of whole brain, cervical spine and other structures/regions
- Change in T1 Gd-enhancing and T2 lesion counts, T1 nonenhancing lesion volumes, T2 lesion volumes, SEL count and volume

Blood biomarkers
- Peripheral blood T- and B-cell subpopulations
- Serum CXCL 13 levels
- Serum Ig levels (IgG, IgM, IgA)
- Serum NfL levels

Genomics
- HLA class II haplotypes, including DRB1*15:01
- Ancestral markers

CXCL 13, C-X-C motif chemokine ligand 13; Gd, gadolinium; HLA, human leukocyte antigen; Ig, immunoglobulin; NfL, neurofilament light chain; SEL, slowly expanding/evolving lesion.