Phase Ia/Ib Dose-Escalation Study of the Anti-TIGIT Antibody Tiragolumab as a Single Agent and in Combination with Atezolizumab in Patients with Advanced Solid Tumors

Dr. Johanna Bendell, M.D.

Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
Phase Ia/Ib Dose-Escalation Study of the Anti-TIGIT Antibody Tiragolumab as a Single Agent and in Combination with Atezolizumab in Patients with Advanced Solid Tumors

1 Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, 2 Princess Margaret Hospital, Toronto, Ontario, Canada, 3 Seoul National University, Seoul, Korea, 4 Yale University, New Haven, CT, 5 Dana-Farber Cancer Institute, Boston, MA, 6 HonorHealth Research Institute, Scottsdale, AZ, 7 Memorial Sloan Kettering Cancer Center, New York, NY, 8 Peter MacCallum Cancer Center, Melbourne, Australia, 9 Hospital Univ Vall d'Hebron; Barcelona, Spain, 10 Institut Bergonie, Bordeaux, France, 11 Samsung Medical Center, Seoul, Korea, 12 Hospital Clinico Universitario de Valencia, Valencia, Spain, 13 University of California Los Angeles, Los Angeles, CA, 14 START Madrid-CIOCC, Madrid, Spain, 15 ICO L'Hospitalet; Barcelona, Spain, 16 Hospital del Mar, Barcelona, Spain, 17 Institut Gustave Roussy, Villejuif, France, 18 Centre Léon Bérard, Lyon, France, 19 Institut Claudius Regaud; Toulouse, France, 20 Kinghorn Cancer Centre; Darlinghurst, Australia, 21 Clinica Universitaria de Navarra; Navarra, Spain, 22 Johns Hopkins , Baltimore, MD, 23 Institut Curie, Paris, France, 24 Genentech, Inc. South San Francisco, CA, 25 F. Hoffmann-La Roche, Basel, Switzerland, 26 Severance Hospital, Yonsei, Seoul, Korea, 27 Asan Medical Center, Seoul, Korea
Disclosures for Johanna Bendell

• **Research Funding** - All to Institution:

Gilead, Genentech/Roche, BMS, Five Prime, Lilly, Merck, MedImmune, Celgene, EMD Serono, Taiho, Macrogenics, GSK, Novartis, OncoMed, LEAP, TG Therapeutics, AstraZeneca, BI, Daiichi Sankyo, Bayer, Incyte, Apexigen, Koltan, SynDevRex, Forty Seven, AbbVie, Array, Onyx, Sanofi, Takeda, Eisai, Celldex, Agios, Cytomx, Nektar, ARMO, Boston Biomedical, Ipsen, Merrimack, Tarveda, Tyrogenex, Oncogenex, Marshall Edwards, Pieris, Mersana, Calithera, Blueprint, Evelo, FORMA, Merus, Jacobio, Effector, Novocare, Arrys, Tracon, Sierra, Innate, Arch Oncology, Prelude Oncology, Unum Therapeutics, Vyriad, Harpoon, ADC, Amgen, Pfizer, Millennium, Imclone, Acerta Pharma, Rgenix, Bellicum, Gossamer Bio, Arcus Bio, Seattle Genetics, TempestTx, Shattuck Labs.

• **Consulting/Advisory Role** - All to Institution:

Gilead, Genentech/Roche, BMS, Five Prime, Lilly, Merck, MedImmune, Celgene, Taiho, Macrogenics, GSK, Novartis, OncoMed, LEAP, TG Therapeutics, AstraZeneca, BI, Daiichi Sankyo, Bayer, Incyte, Apexigen, Array, Sanofi, ARMO, Ipsen, Merrimack, Oncogenex, FORMA, Arch Oncology, Prelude Therapeutics, Phoenix Bio, Cyteir, Molecular Partners, Innate, Torque, Tizona, Janssen, Tolero, TD2 (Translational Drug Development), Amgen, Seattle Genetics, Moderna Therapeutics, Tanabe Research Laboratories, Beigene, Continuum Clinical, Agois.

• **Food/Beverage/Travel:**

Gilead, Genentech/Roche, BMS, Five Prime, Lilly, Merck, MedImmune, Celgene, Taiho, Macrogenics, GSK, Novartis, OncoMed, LEAP, TG Therapeutics, AstraZeneca, BI, Daiichi Sankyo, Bayer, Incyte, Apexigen, Array, Sanofi, ARMO, Ipsen, Merrimack, Oncogenex, FORMA, Arch Oncology, Prelude Therapeutics, Phoenix Bio, Cyteir, Molecular Partners, Innate, Torque, Tizona, Janssen, Tolero, TD2 (Translational Drug Development), Amgen, Seattle Genetics, Moderna Therapeutics, Tanabe Research Laboratories, Beigene, Continuum Clinical, Agois.

• I will discuss investigational use of the anti-TIGIT antibody tiragolumab (MTIG7192A) in my presentation.
TIGIT Inhibits the Immune Response

- TIGIT (T cell immunoreceptor with Ig and ITIM domains) is a novel inhibitory receptor expressed on multiple immune cells (T cells and NK cells)\(^1\)-\(^4\)

1. TIGIT inhibits T and NK cells by binding to PVR

2. TIGIT down-modulates APCs

3. TIGIT binds to and blocks CD226 (activating)

Diagram:
- TIGIT inhibits T and NK cells by binding to PVR
- TIGIT down-modulates APCs by binding to PVR and blocking CD226
- TIGIT binds to and blocks CD226 (activating)

Text:
- APC = antigen-presenting cell; NK = natural killer; PVR = poliovirus receptor; Teff = T effector; Treg = T regulatory
- Adapted from Manieri et al. Trends Immunology 2017

\(^1\) Yu et al. *Nature Immunology* 2009; \(^2\) Johnston et al. *Cancer Cell* 2014; \(^3\) Manieri et al. *Trends Immunology* 2017; \(^4\) Rotte et al. *Annals of Oncology* 2018
TIGIT is Co-Expressed with PD-1

Background:
TIGIT expression correlates with PD-1, especially in tumor-infiltrating T cells, and is often co-expressed on the same cell.

Hypothesis:
Anti-TIGIT antibodies, which prevent TIGIT from binding, may restore anti-tumor response and enhance anti-PD-L1 antibodies.

APC = antigen-presenting cell; NK = natural killer
In preclinical mouse models, combination treatment with anti-TIGIT and anti-PD-L1 antibodies synergistically improves tumor control and prolongs survival.

Figure adapted from Johnston et al. Cancer Cell 2014
Tiragolumab is an Anti-TIGIT Antibody

- Tiragolumab is a fully human IgG1/kappa anti-TIGIT monoclonal antibody with an intact Fc region that blocks the binding of TIGIT to its ligand PVR and to the co-activating receptor CD226

- Study GO30103 is a first in-human Phase I study of tiragolumab as a single agent (Phase Ia) and in combination with the anti-PD-L1 antibody atezolizumab (Phase Ib) in patients with advanced solid tumors (NCT02794571)
 - Stage I: Dose-escalation
 - Stage II: Dose-expansion at the recommended Phase II dose (RP2D)
Study Objectives

Primary Objectives

• *Phase Ia*: To determine the preliminary safety, tolerability, and RP2D of tiragolumab

• *Phase Ib*: To determine the preliminary safety, tolerability, and RP2D of tiragolumab in combination with atezolizumab

Secondary Objectives

• To determine the pharmacokinetics of tiragolumab as a single agent and in combination with atezolizumab

• To determine the preliminary anti-tumor activity of tiragolumab as a single agent and in combination with atezolizumab
Study Design: Phase Ia Dose-Escalation

Phase Ia: Tiragolumab

Dose-Escalation

- Tiragolumab administered as fixed-dose IV every 3 weeks (Q3W)
- Dose-liming toxicity (DLT) window of 21 days
- Backfill enrollment permitted in cleared dose levels

<table>
<thead>
<tr>
<th>Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Data cutoff: 2 Dec 2019
Study Design: Phase Ia with Concurrent Phase Ib

Phase Ia: Tiragolumab

<table>
<thead>
<tr>
<th>Dose-Escalation</th>
<th>1200 mg</th>
<th>600 mg</th>
<th>400 mg</th>
<th>100 mg</th>
<th>30 mg</th>
<th>8 mg</th>
<th>2 mg</th>
</tr>
</thead>
</table>

Phase Ib: Tiragolumab + Atezolizumab

<table>
<thead>
<tr>
<th>Dose-Escalation</th>
<th>1200 mg + Atezo</th>
<th>600 mg + Atezo</th>
<th>400 mg + Atezo</th>
<th>100 mg + Atezo</th>
<th>30 mg + Atezo</th>
<th>8 mg + Atezo</th>
<th>2 mg + Atezo</th>
</tr>
</thead>
</table>

- Concurrent dose-escalation in Phase Ib with increasing dose of tiragolumab Q3W with atezolizumab at fixed dose of 1200 mg IV Q3W
- Backfill enrollment permitted in cleared dose levels in Phase Ia and Phase Ib
- Patients with disease progression in Phase Ia could crossover to Phase Ib

Results of dose-escalation in Phase Ia and in Phase Ib will be presented today

Data cutoff: 2 Dec 2019
Study Design: Concurrent Expansion Cohorts

Phase Ia: Tiragolumab

- **Dose-Expansion**
 - 1200 mg
 - 600 mg
 - 400 mg
 - 100 mg
 - 30 mg
 - 8 mg
 - 2 mg

- **Dose-Escalation**
 - 1200 mg
 - 600 mg
 - 400 mg
 - 100 mg
 - 30 mg
 - 8 mg
 - 2 mg

Phase Ib: Tiragolumab + Atezolizumab

- **Dose-Escalation**
 - 1200 mg + Atezo
 - 600 mg + Atezo
 - 400 mg + Atezo
 - 100 mg + Atezo
 - 30 mg + Atezo
 - 8 mg + Atezo
 - 2 mg + Atezo

- **Dose-Expansion**
 - 600 mg + Atezo
 - 400 mg + Atezo
 - Non-Small Cell Lung Cancer
 - Other Solid Tumors

Results of Phase Ib NSCLC Expansion Cohort will be presented today

Data cutoff: 2 Dec 2019

- Expansion cohorts in tumor types with tiragolumab doses ≥ 400 mg Q3W in Phase Ia and in Phase Ib with atezolizumab
Key Eligibility Criteria

Key Inclusion Criteria
- Patients with advanced solid tumors for whom standard therapy does not exist or is ineffective
- Age ≥ 18 years
- ECOG performance of 0 or 1
- Measurable disease per RECIST v1.1
- *Expansion cohorts only*: PD-L1-positive tumors not previously treated with cancer immunotherapy (CIT-naïve)
 - PD-L1 measured with the Ventana SP142 immunohistochemistry assay

Key Exclusion Criteria
- Prior anti-TIGIT therapy
- Anti-cancer therapy within 3 weeks or palliative radiation within 2 weeks
- Discontinuation of prior cancer immunotherapy due to immune-mediated Grade ≥ 3 adverse events
- Prior active or untreated central nervous system metastases
- History of autoimmune disease
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Phase Ia: Tiragolumab (n=24)</th>
<th>Phase Ib: Tiragolumab + Atezo (n=49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, median (range)</td>
<td>59.5 (40-77)</td>
<td>54.0 (25-81)</td>
</tr>
<tr>
<td>Male</td>
<td>10 (42%)</td>
<td>24 (49%)</td>
</tr>
<tr>
<td>ECOG PS 1</td>
<td>17 (71%)</td>
<td>36 (74%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (63%)</td>
<td>30 (61%)</td>
</tr>
<tr>
<td>Asian</td>
<td>7 (29%)</td>
<td>13 (27%)</td>
</tr>
<tr>
<td>Prior cancer therapies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 (8%)</td>
<td>7 (14%)</td>
</tr>
<tr>
<td>2</td>
<td>6 (25%)</td>
<td>14 (29%)</td>
</tr>
<tr>
<td>3</td>
<td>6 (25%)</td>
<td>10 (20%)</td>
</tr>
<tr>
<td>≥4</td>
<td>10 (42%)</td>
<td>18 (37%)</td>
</tr>
</tbody>
</table>

ECOG = Eastern Cooperative Oncology Group; PS = performance status
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic, n (%)</th>
<th>Phase Ia: Tiragolumab (n=24)</th>
<th>Phase Ib: Tiragolumab + Atezo (n=49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary cancer history type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>4 (17%)</td>
<td>8 (16%)</td>
</tr>
<tr>
<td>Rectum</td>
<td>4 (17%)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Breast</td>
<td>2 (8%)</td>
<td>9 (18%)</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>-</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>Head and neck cancer</td>
<td>-</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>1 (4%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Other*</td>
<td>13 (54%)</td>
<td>15 (31%)</td>
</tr>
</tbody>
</table>

* Other includes:

- **Phase Ia**: endometrial (n=2), melanoma (n=2); and appendiceal, bladder, cervical, cholangiocarcinoma, kidney, neuroendocrine, peritoneum, sarcoma, and stomach (n=1 each)

- **Phase Ib**: sarcoma (n=4), stomach (n=2), melanoma (n=2); and anus, appendiceal, bladder, esophagus, GE junction, Merkel cell, and peritoneum (n=1 each)

Data cutoff: 2 Dec 2019
Patient Disposition

- Dose escalation completed for each dose level in Phase Ia and Phase Ib

<table>
<thead>
<tr>
<th>Status, n (%)</th>
<th>Phase Ia: Tiragolumab (n=24)</th>
<th>Phase Ib: Tiragolumab + Atezo (n=49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On treatment</td>
<td>0 (0%)</td>
<td>5 (10%)</td>
</tr>
<tr>
<td>Discontinued</td>
<td>24 (100%)</td>
<td>44 (90%)</td>
</tr>
<tr>
<td>Progression of disease</td>
<td>10 (42%)</td>
<td>37 (76%)</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>2 (8%)</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>Lost to follow-up</td>
<td>0 (0%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Crossover to Phase Ib</td>
<td>12 (50%)</td>
<td>--</td>
</tr>
</tbody>
</table>

Data cutoff: 2 Dec 2019
Safety Summary of Adverse Events

- No DLTs were observed across all dose levels in Phase Ia and Phase Ib

<table>
<thead>
<tr>
<th></th>
<th>Phase Ia: Tiragolumab (n=24)</th>
<th>Phase Ib: Tiragolumab + Atezo (n=49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any-cause adverse event</td>
<td>24 (100%)</td>
<td>46 (94%)</td>
</tr>
<tr>
<td>Grade 3-5 adverse event</td>
<td>6 (25%)</td>
<td>28 (57%)</td>
</tr>
<tr>
<td>Related Grade 3-5 adverse events*</td>
<td>1 (4%)</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Serious adverse events</td>
<td>6 (25%)</td>
<td>26 (53%)</td>
</tr>
<tr>
<td>AE leading to study drug(s) interruption</td>
<td>4 (17%)</td>
<td>12 (25%)</td>
</tr>
<tr>
<td>AE leading to study drug(s) withdrawal**</td>
<td>0</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

* Related AEs in Phase Ia was Grade 3 blood creatinine increased (n=1). No Grade 5 AEs were associated with tiragolumab. Related AEs in Phase Ib were Grade 3 hyperlipasemia (n=1) and Grade 3 lymphocyte count decreased (n=1). No Grade 5 AEs were associated with tiragolumab and/or atezolizumab.

** One patient withdrew from the Phase Ib study for gastrointestinal complaints related to clinical progression.

Data cutoff: 2 Dec 2019
All Adverse Events ≥ 10% in Phase Ia

Data cutoff: 2 Dec 2019

All-Cause Adverse Events

- Fatigue
- Vomiting
- Constipation
- Decreased Appetite
- Abdominal Pain
- Musculoskeletal Pain
- Nausea
- Pain in Extremity
- Pruritis
- Arthralgia
- Cough
- Hypomagnesemia
- Insomnia
- Malignant Progression*
- Myalgia
- Urinary Tract Infection

Adverse Events Related to Tiragolumab

- Fatigue
- Vomiting
- Constipation
- Decreased Appetite
- Abdominal Pain
- Musculoskeletal Pain
- Nausea
- Pain in Extremity
- Pruritis
- Arthralgia
- Cough
- Hypomagnesemia
- Insomnia
- Malignant Progression*
- Myalgia
- Urinary Tract Infection

Relative Frequency (%)

* Grade 5 AEs were malignant neoplasm progression (n=3), not related to tiragolumab.
All Adverse Events ≥ 10% in Phase Ib

Data cutoff: 2 Dec 2019

Grade 5 AEs were malignant neoplasm progression (n=12) and pulmonary embolism (n=2), not related to study drug(s).
All Immune-Mediated Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Phase Ia: Tiragolumab (n=24)</th>
<th>Phase Ib: Tiragolumab + Atezo (n=49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All immune-mediated AE</td>
<td>4 (17%)</td>
<td>29 (59%)</td>
</tr>
<tr>
<td>Grade 3-5 immune-mediated AE*</td>
<td>0</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Infusion-related reaction</td>
<td>2 (8%)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Rash</td>
<td>2 (8%)</td>
<td>14 (29%)</td>
</tr>
<tr>
<td>Hepatitis (diagnosis and lab)</td>
<td>1 (4%)</td>
<td>10 (20%)</td>
</tr>
<tr>
<td>Pancreatitis (lab)</td>
<td>1 (4%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>0</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>0</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

* No Grade 5 immune-mediated AEs were associated with tiragolumab and/or atezolizumab.

Data cutoff: 2 Dec 2019
Pharmacokinetics of Tiragolumab

• The exposure of tiragolumab increased with dose, and the pharmacokinetics of tiragolumab are not altered in combination with atezolizumab.
Pharmacodynamics of Tiragolumab

• Complete and sustained occupancy of peripheral TIGIT receptors on CD8+ T cells and on NK cells was observed at tiragolumab doses ≥ 30 mg Q3W in Phase Ia

![Graph showing % TIGIT receptors available for binding to tiragolumab at different doses for CD8+ T cells and NK cells over study days.](image)

Data cutoff: 2 Dec 2019
Phase Ia Dose-Escalation: Tiragolumab

Data cutoff: 2 Dec 2019

Best % Change in SLD

Bladder > Gastric > Colon > Endometrial > Sarcoma > Colon > Bile Duct > Rectal > Endometrial > Breast > Rectal > Melanoma > Rectal > Appendix > Cervical > Mucosal Mel > Colon > TNBC > Neuroendocrine > Ovarian > Rectal > Ovarian

PD-L1
SP142

TC/IC 0 or 1
TC/IC 2 or 3

Data cutoff: 2 Dec 2019
Phase Ib Dose-Escalation: Tiragolumab + Atezo

Data cutoff: 2 Dec 2019

Best % Change in SLD

Melanoma
Gastric
NSCLC
Esophageal
Rectal
Sarcoma
Ovarian
Anal
HNSCC
TNBC
Colon
TC/IC 0 or 1
PD-L1
SP142

Prior Cancer
Immunotherapy (CIT)

TC/IC 2 or 3

TC/IC 0 or 1

Data cutoff: 2 Dec 2019
Recommended Phase II Dose for Tiragolumab

- Tiragolumab at 600 mg Q3W was chosen as the recommended Phase II dose:
 - Complete and sustained peripheral receptor occupancy occurred at tiragolumab doses ≥ 30 mg
 - Clinical activity for tiragolumab occurred at 400 mg to 600 mg, as determined by partial responses in the Phase Ib

- Expansion cohorts were then initiated with tiragolumab and atezolizumab in PD-L1-positive cancer immunotherapy (CIT)-naïve indications, including metastatic NSCLC
Phase Ib: CIT-Naïve PD-L1 Positive NSCLC Expansion

ORR = 46% (6/13)
DCR = 85% (11/13)

Data cutoff: 2 Dec 2019
Phase Ib: CIT-Naïve PD-L1-Positive NSCLC Expansion

Best Response
- CR
- PR
- SD
- PD
- Ongoing

Days on Study

% Change in SLD

Data cutoff: 2 Dec 2019
Conclusions

• Tiragolumab was well-tolerated in Phase Ia and with atezolizumab in Phase Ib
 - No dose-limiting toxicities occurred across all dose levels in Phase Ia or Phase Ib
 - The safety profile of tiragolumab appears similar to other checkpoint inhibitors

• The exposure of tiragolumab increased with dose, and the pharmacokinetics of
 tiragolumab are not altered in combination with atezolizumab
 - Complete and sustained occupancy of peripheral TIGIT receptors was observed at
 tiragolumab doses ≥ 30 mg Q3W
 - Recommended Phase II dose of tiragolumab is 600 mg Q3W in combination with
 atezolizumab 1200 mg Q3W
Conclusions

• No objective responses occurred in Phase Ia, although most patients had tumor types not typically responsive to CIT, were PD-L1-negative, or were heavily pre-treated

• Objective responses occurred in Phase Ib, mainly in CIT-naïve PD-L1 positive tumors
 - In a PD-L1 positive NSCLC expansion cohort (n=13), confirmed ORR was 46%, with several responses showing durability

• Based on the preliminary safety and activity in this study, the combination of tiragolumab + atezolizumab is being tested in a randomized, placebo-controlled Phase II study in NSCLC (CITYSCAPE, NCT03563716)

 [Rodriguez-Abreu et al., ASCO 2020]
Acknowledgements

• Special thanks and appreciation to all of the patients and their families who participated on this clinical study

• The study is sponsored by Genentech, Inc.

• Medical writing assistance for this presentation was provided by Bryan Hains, PhD, Genentech, Inc.
Acknowledgements

To all the investigators, study teams, and clinical study sites:

• **Australia**: Jayesh Desai (Peter MacCallum Cancer Center, Melbourne); Amy Prawira (Kinghorn Cancer Center, St. Vincent’s Hospital, Darlinghurst)

• **Canada**: Phil Bedard (Princess Margaret Hospital, Toronto, Ontario)

• **France**: Rastislav Bahleda (Institut Gustave Roussey, Villejuif); Philippe Cassier (Centre Leon Berard, Lyon); Jean-Pierre Delord (Institut Claudius Regaud, Toulouse); Antoine Italiano (Institut Bergonie, Bordeaux); Emanuela Romano (Institut Curie, Paris)

• **South Korea**: Myung Ju Ahn (Samsung Medical Center, Seoul); Yung-Jue Bang (Seoul National University, Seoul); Byoung Chul Cho (Severance Hospital, Yonsei University, Seoul); Tae Won Kim (Asan Medical Center, Seoul)

• **Spain**: Emiliano Calvo (START Madrid-CIOCC, Madrid); Andrés Cervantes (Hospital Clinico Universitario, Valencia); Elena Garralda (Hospital Vall d’Hebron, Barcelona); Marta Gil Martín (ICO L’Hospitalet, Barcelona); Maria Martinez-Garcia (Hospital del Mar, Barcelona); Ignacio Melero (Clinica Universitaria de Navarra, Navarra)

• **United States**: Johanna Bendell (Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN); Sandra D’Angelo (Memorial Sloan-Kettering Cancer Cancer, New York, NY); Leisha Emens (Johns Hopkins, Sidney Kimmel Cancer Center, Baltimore, MD); Michael A. Gordon (HonorHealth Research Institute, Scottsdale, AZ); F. Stephen Hodi (Dana-Farber Cancer Institute, Boston, MA); Patricia LoRusso (Yale Cancer Center, New Haven, CT); Zev Wainberg (University of California Los Angeles, Los Angeles, CA)