Efficacy of atezolizumab in the treatment of solid tumors with high tumor mutational burden (TMB): A MyPathway study cohort

John Hainsworth*,1,2 Claire F. Friedman*,3,4 Razelle Kurzrock,5 David R. Spigel,1,2 Howard Burris,1,2 Christopher J. Sweeney,6 Funda Meric-Bernstam,7 Yong Wang,8 Jonathan Levy,8 David S. Shames,8 Katja Schulze,8 Arisha Patel,8 Charles Swanton9,10

1Sarah Cannon Research Institute, Nashville, TN, USA; 2Tennessee Oncology, PLLC, Nashville, TN, USA; 3Memorial Sloan Kettering Cancer Center, New York, NY, USA; 4Weill Medical College at Cornell University, New York, NY, USA; 5Moores Cancer Center, UC San Diego, San Diego, CA, USA; 6Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; 7University of Texas MD Anderson Cancer Center, Houston, TX, USA; 8Genentech, Inc., South San Francisco, CA, USA; 9Francis Crick Institute, London, UK; 10UCL Hospitals, London, UK

*Co-lead authors.
Claire F. Friedman, MD

I have the following financial relationships to disclose:

Scientific Advisory Board (compensation waived): Merck, Genentech
Grant/Research support to institution from: Bristol Myers Squibb, Merck, AstraZeneca, Daiichi, and Genentech

I will discuss the following off-label use and/or investigational use in my presentation:

Atezolizumab treatment of patients with non-indicated tumor types and high tumor mutational burden
Background

- High tumor mutational burden (TMB-H) is associated with higher neoantigen expression, potentially rendering TMB-H tumors more responsive to cancer immunotherapy.\(^1\) Recent studies have indicated that TMB-H status is associated with improved response to immune checkpoint inhibitors, including those targeting the PD-1/PD-L1 pathway\(^1,2\)

- The anti–PD-1 antibody pembrolizumab was recently FDA-approved for patients with TMB ≥10 mut/Mb solid tumors based on the KEYNOTE-158 study.\(^3\) However, the optimal TMB cutoff to maximize efficacy in the pan-tumor population has not been clearly delineated

- Retrospective studies suggest that TMB ≥16 mut/Mb may act as a threshold for enrichment of response to atezolizumab, an anti–PD-L1 antibody that enhances tumor-specific T-cell responses, in various tumor types\(^4–6\)

- We present a cohort analysis of atezolizumab treatment in patients with advanced solid tumors characterized by TMB ≥16 mut/Mb or TMB ≥10 and <16 mut/Mb from MyPathway (NCT02091141), an open-label, multicenter, non-randomized, multiple-basket phase 2a study assessing activity of FDA-approved therapies in non-indicated tumors with targetable alterations

MyPathway Atezolizumab Arm Study Design

Eligible patients had advanced solid tumors with TMB ≥10 mut/Mb by any CLIA assay

Patients without FoundationOne CDx (F1CDx)\(^a\) TMB data provided archival or fresh tumor tissue for central F1CDx retesting after enrollment
- Aged ≥18 years
- No satisfactory alternative treatment options
- Pan-tumor indications

Key exclusion criteria
- Prior therapy with CIT (PD-1, PD-L1/L2, CTLA-4)

Total patients: N=121

Primary endpoint
- IRF-assessed\(^b\) ORR by RECIST 1.1 in patients with F1CDx TMB ≥16 mut/Mb

Secondary endpoints
- DOR, DCR, PFS, OS, safety

Exploratory endpoints
- Clinical outcomes in other TMB testing groups: F1CDx TMB ≥10 and <16 mut/Mb, TMB by any CLIA assay, and TMB by blood
- Biomarker analysis

Atezolizumab 1200 mg q3w
Treatment until loss of clinical benefit

Study enrollment completed: August 2018–July 2020
Data cut-off date: January 19, 2021

\(^a\)F1CDx TMB testing was used for the primary analysis to limit variability in TMB measurements between different gene panels. \(^b\)Patients were assessed by the investigator until the last patient ended treatment, at which point scans would be submitted for IRF assessments. CIT, cancer immunotherapy; CLIA, Clinical Laboratory Improvement Amendments; CTLA, cytotoxic T-lymphocyte-associated protein; DCR, disease control rate; DOR, duration of response; F1CDx, FoundationOne Companion Diagnostic; IRF, independent review facility; NA, not available; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; q3w, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors.
All patients enrolled with TMB ≥ 10 mut/Mb by any CLIA assay (N=121)

- Any CLIA testing TMB ≥ 16 mut/Mb
 - n=56

- Any CLIA testing TMB ≥ 10 and <16 mut/Mb
 - n=65
TMB Local and Central Testing

All efficacy-evaluable patients with TMB ≥ 10 mut/Mb by any CLIA assay (n=120)

One patient with TMB ≥ 10 and <16 mut/Mb did not have a tumor evaluation reported by the data cut-off, and is not included in the efficacy population.
TMB Local and Central Testing

All efficacy-evaluable patients with F1CDx TMB ≥10 mut/Mb (n=90)

Patients without F1CDx TMB testing at enrollment submitted tissue for retrospective F1CDx re-testing

Any CLIA TMB ≥16 mut/Mb, n=56

Any CLIA TMB ≥10 and <16 mut/Mb, n=64

F1CDx testing
TMB ≥16 mut/Mb
n=42
Primary efficacy population

F1CDx testing
TMB ≥10 and <16 mut/Mb
n=48
All efficacy-evaluable patients with F1CDx TMB ≥10 mut/Mb (n=90)

Patients without F1CDx TMB testing at enrollment submitted tissue for retrospective F1CDx re-testing

- Any CLIA TMB ≥16 mut/Mb, n=56
- Any CLIA TMB ≥10 and <16 mut/Mb, n=64

F1CDx re-testing
- TMB <10 mut/Mb, n=13
- Failed F1CDx or insufficient tissue for re-testing, n=7

Primary efficacy population
- F1CDx testing TMB ≥16 mut/Mb, n=42
- Failed F1CDx or insufficient tissue for re-testing, n=6

F1CDx testing
- TMB ≥10 and <16 mut/Mb, n=48
Baseline Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All N=121</th>
<th>F1CDx TMB ≥16 mut/Mb n=42</th>
<th>F1CDx TMB ≥10 and <16 mut/Mb n=49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>67.0 (25–90)</td>
<td>67.0 (25–90)</td>
<td>66.0 (44–85)</td>
</tr>
<tr>
<td>Number of prior regimens, median (range)</td>
<td>3 (0–14)</td>
<td>2 (0–13)</td>
<td>3 (0–14)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>74 (61.2)</td>
<td>19 (45.2)</td>
<td>35 (71.4)</td>
</tr>
<tr>
<td>Male</td>
<td>47 (38.8)</td>
<td>23 (54.8)</td>
<td>14 (28.6)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>91 (75.2)</td>
<td>37 (88.1)</td>
<td>34 (69.4)</td>
</tr>
<tr>
<td>Black/African American</td>
<td>13 (10.7)</td>
<td>3 (7.1)</td>
<td>7 (14.3)</td>
</tr>
<tr>
<td>Asian</td>
<td>8 (6.6)</td>
<td>0</td>
<td>4 (8.2)</td>
</tr>
<tr>
<td>Other<sup>a</sup></td>
<td>9 (7.4)</td>
<td>2 (4.8)</td>
<td>4 (8.2)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td>n=120</td>
<td>n=42</td>
<td>n=49</td>
</tr>
<tr>
<td>0</td>
<td>38 (31.7)</td>
<td>11 (26.2)</td>
<td>17 (34.7)</td>
</tr>
<tr>
<td>1</td>
<td>82 (68.3)</td>
<td>31 (73.8)</td>
<td>32 (65.3)</td>
</tr>
</tbody>
</table>

^a“Other” includes American Indian/Alaska Native and Other patients. ECOG PS, Eastern Cooperative Oncology Group performance status.
<table>
<thead>
<tr>
<th>Clinical outcome</th>
<th>F1CDx TMB (\geq 16 \text{ mut/Mb}) n=42</th>
<th>F1CDx TMB (\geq 10 \text{ and } <16 \text{ mut/Mb}) n=48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed objective response rate, (n) (%), 95% CI</td>
<td>16 (38.1) 23.6–54.4 3 CR(^b), 13 PR</td>
<td>1 (2.1) 0.1–11.1 1 PR</td>
</tr>
<tr>
<td>Disease control rate, (n) (%), 95% CI</td>
<td>26 (61.9) 45.6–76.4</td>
<td>11 (22.9) 12.0–37.3</td>
</tr>
<tr>
<td>Duration of confirmed response, median months, 95% CI</td>
<td>Not reached</td>
<td>Not reached</td>
</tr>
<tr>
<td>Progression-free survival, median months, 95% CI</td>
<td>5.7 2.7–8.5</td>
<td>1.8 1.4–2.6</td>
</tr>
<tr>
<td>Overall survival, median months, 95% CI</td>
<td>19.8 11.9–NE</td>
<td>11.4 5.3–15.7</td>
</tr>
</tbody>
</table>

\(^a\)Includes patients with confirmed CR or PR. \(^b\)Patients with CR had biliary, colon, and head and neck cancers. \(^c\)Includes patients with CR, PR, or stable disease \(>4 \) months. CI, confidence interval; CR, complete response; NE, not evaluable; PR, partial response.
Median follow-up was 11.7 months in patients with F1CDx TMB ≥16 mut/Mb and 7.5 months in patients with F1CDx TMB ≥10 and <16 mut/Mb.
Exploratory Clinical Outcomes

- In patients with a local non-F1CDx TMB assay and subsequent central F1CDx TMB testing, overall agreement for TMB subgroups (<16 mut/Mb or ≥16 mut/Mb) was 74.4% (29/39 patients)

- No confirmed responses were observed among:
 - Patients with TMB <10 mut/Mb by F1CDx (n=17)
 - Patients with TMB ≥16 mut/Mb by any CLIA assay and TMB <16 mut/Mb by F1CDx (n=9)

- ORR was higher in patients with TMB ≥16 mut/Mb by any CLIA test than those with TMB ≥10 and <16 mut/Mb

<table>
<thead>
<tr>
<th></th>
<th>Any CLIA test</th>
<th>Any CLIA test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥16 mut/Mb</td>
<td>≥10 and <16 mut/Mb</td>
</tr>
<tr>
<td>Confirmed objective response rate, n (%)</td>
<td>16 (28.6)</td>
<td>2 (3.1)</td>
</tr>
<tr>
<td>95% CI</td>
<td>17.3–42.2</td>
<td>0.4–10.8</td>
</tr>
<tr>
<td></td>
<td>3 CR, 13 PR</td>
<td>2 PR</td>
</tr>
</tbody>
</table>
Association of ORR with F1CDx TMB Cutoff in MyPathway

- A statistically significant association of ORR with F1CDx TMB cutoff was observed (log odds ratio of response for an increase of 1 mut/Mb to the cutoff: slope 0.119, 95% CI 0.078–0.160)

<table>
<thead>
<tr>
<th>F1CDx TMB cutoff mut/Mb</th>
<th>n/n</th>
<th>ORR, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>17/90</td>
<td>18.9 (11.4–28.5)</td>
</tr>
<tr>
<td>13</td>
<td>16/56</td>
<td>28.6 (17.3–42.2)</td>
</tr>
<tr>
<td>16</td>
<td>16/42</td>
<td>38.1 (23.6–54.4)</td>
</tr>
<tr>
<td>19</td>
<td>15/34</td>
<td>44.1 (27.2–62.1)</td>
</tr>
<tr>
<td>22</td>
<td>15/29</td>
<td>51.7 (32.5–70.6)</td>
</tr>
<tr>
<td>25</td>
<td>15/25</td>
<td>60.0 (38.7–78.9)</td>
</tr>
<tr>
<td>28</td>
<td>15/24</td>
<td>62.5 (40.6–81.2)</td>
</tr>
<tr>
<td>31</td>
<td>12/20</td>
<td>60.0 (36.1–80.9)</td>
</tr>
<tr>
<td>34</td>
<td>11/19</td>
<td>57.9 (33.5–79.7)</td>
</tr>
<tr>
<td>37</td>
<td>10/16</td>
<td>62.5 (35.4–84.8)</td>
</tr>
<tr>
<td>40</td>
<td>10/15</td>
<td>66.7 (38.4–88.2)</td>
</tr>
</tbody>
</table>

Statistical analysis was based on a marginal structural model (MSM) estimate for ORR at various F1CDx TMB cut-offs. Red line represents the MSM estimate; ie, the estimated logistic linear trend. Grey boundaries represent 95% CI.
Clinical Outcomes by MSI Status

One patient with F1CDx TMB ≥10 and <16 mut/Mb + MSI-H and a PR is not shown. Whiskers represent 95% CI.

- One patient had a CR (colon cancer).
- MSI-NH includes microsatellite stable, low, or intermediate tumors.
- Two patients had a CR (biliary and head and neck cancer). MSI-H, high microsatellite instability; MSI-NH, microsatellite instability not high.

Clinical Outcomes

<table>
<thead>
<tr>
<th>Condition</th>
<th>ORR (%)</th>
<th>DCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1CDx TMB ≥16 mut/Mb + MSI-H</td>
<td>54.5</td>
<td>72.7</td>
</tr>
<tr>
<td>F1CDx TMB ≥16 mut/Mb + MSI-NH</td>
<td>30.0</td>
<td>56.7</td>
</tr>
<tr>
<td>F1CDx TMB ≥10 and <16 mut/Mb + MSI-NH</td>
<td>3.3</td>
<td>22.2</td>
</tr>
</tbody>
</table>

One patient with F1CDx TMB ≥10 and <16 mut/Mb + MSI-H and a PR is not shown. Whiskers represent 95% CI.

- One patient had a CR (colon cancer).
- MSI-NH includes microsatellite stable, low, or intermediate tumors.
- Two patients had a CR (biliary and head and neck cancer). MSI-H, high microsatellite instability; MSI-NH, microsatellite instability not high.

Access slides at: https://bit.ly/30xu8se
Objective Response Rate by PD-L1 Status in Patients With F1CDx TMB ≥16 mut/Mb

The PD-L1 subgroup analysis was post-hoc and exploratory. Whiskers represent 95% CI.

- a n=5 responders (all CRC).
- b n=2 responders (prostate and adrenocortical).
- c n=3 responders (cervical, head and neck, and biliary tract).
- d n=1 responder (CRC).
- e n=5 responders (CRC [n=3], prostate, and adrenocortical).
- f n=2 responders (head and neck, and biliary tract).
- g Three patients had a TPS score, but did not have a CPS score.

CPS, Combined Positive Score; CRC, colorectal cancer; TPS, Tumor Proportion Score.
Tumor Groups in Efficacy-Evaluable Patients With F1CDx TMB Testing

In patients with TMB ≥16 mut/Mb by F1CDx:

- Among 10 patients with colorectal cancer, ORR was 70.0% (7/10, 95% CI 34.8–93.3)
 - Three of seven responders had tumors characterized as MSI-NH
- In two patients with biliary tract cancer, one with an MSI-NH tumor had a CR
- Responses were observed in patients with MSI-NH breast cancer (1/7), CUP (2/3), head and neck cancer (1/3), and adrenocortical cancer (1/1)
- Responses were also observed in patients with MSI-H tumors in the pancreas (1/1), cervix (1/1), and prostate (1/2)

CUP, carcinoma of unknown primary.
Among all patients (N=121), treatment-emergent adverse events (TEAEs) led to:
 • Withdrawal from study drug: 5.0% (6/121)
 • Study drug reduction: 0
 • Study drug interruption: 19.0% (23/121)
 • Death: 4.1% (5/121; none related to study drug)

TEAEs were reported in 90.9% (110/121) of patients
 • Serious TEAEs: 33.1% (40/121)
 • Grade 3–5 TEAEs: 47.9% (58/121)

Treatment-related TEAEs were reported in 56.2% (68/121) of patients
 • Serious related TEAEs: 6.6% (8/121)
 • Grade 3–4 related TEAEs: 12.4% (15/121)

TEAE, treatment-emergent adverse event.
Most common treatment-related TEAEs

<table>
<thead>
<tr>
<th>TEAE</th>
<th>Any grade related TEAE, %</th>
<th>Grade 3–4 related TEAE, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>12</td>
<td><1</td>
</tr>
<tr>
<td>Pruritus</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>10</td>
<td><1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Infusion related reaction</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>Anemia</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Lymphocyte count decreased</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Analysis in safety population (N=121).

Includes treatment-related TEAEs in ≥5% of the population (any grade) and ≥2% of the population (grade 3–4).
Conclusions

- Atezolizumab monotherapy conferred a confirmed ORR of 38.1% in patients with F1CDx TMB ≥16 mut/Mb (n=42)
 - Responses were observed across a broad spectrum of advanced solid tumor types

- Limited efficacy was observed in patients with F1CDx TMB ≥10 and <16 mut/Mb (n=48), with a confirmed ORR of 2.1%

- Meaningful clinical activity was observed in patients with F1CDx TMB ≥16 mut/Mb tumors regardless of MSI status, suggesting that there are genomic mechanisms other than microsatellite instability that drive response to atezolizumab in patients with TMB-H tumors

- Significant enrichment for response to atezolizumab was observed with higher F1CDx TMB cutoffs
Acknowledgments

We are grateful to the patients, families, and study teams who participated in MyPathway. We would also like to thank Julia Malato (Genentech) for biosample management support.

The MyPathway study was funded by F. Hoffmann-La Roche/Genentech. Medical writing support was provided by Ashfield MedComms, an Ashfield Health Company, and was funded by F. Hoffmann-La Roche/Genentech.