Cisplatin-related immunomodulation and efficacy with atezolizumab + cisplatin- vs carboplatin-based chemotherapy in metastatic urothelial cancer

Matthew D. Galsky,1 Xiangnan Guan,2 Romain Banchereau,2 Li Wang,3,4 Jun Zhu,3,4 Haochong Yu,4 Deepali Rishipathak,2 Emma Hajaj,5 Rebecca H. Herbst,5 Ian D. Davis,6 Enrique Grande,7 Aristotelis Bamias,8 Maria De Santis,9 José Ángel Arranz,10 Eiji Kikuchi,11 Jingbin Zhang,12 Chooi Lee,13 Xiaodong Shen,2 Peter C. Black,14 Sanjeev Mariathasan2

1Icahn School of Medicine at Mount Sinai/Tisch Cancer Institute, New York, NY, USA; 2Genentech Inc, South San Francisco, CA, USA; 3Icahn School of Medicine at Mount Sinai, New York, NY, USA; 4Sema4, a Mount Sinai Venture, Stamford, CT, USA; 5Immunai, New York, NY, USA; 6Eastern Health Clinical School, Monash University and Eastern Health, Melbourne, Australia; 7MD Anderson Cancer Center Madrid, Madrid, Spain; 8National & Kapodistrian University of Athens, Athens, Greece; 9Charité Universitätsmedizin, Department of Urology, Berlin, Germany, and Medical University of Vienna, Department of Urology, Vienna, Austria; 10Gregorio Maranon Hospital, Madrid, Spain; 11St. Marianna University School of Medicine, Kawasaki, Japan; 12Hoffmann-La Roche Limited, Mississauga, ON, Canada; 13Roche Products Limited, Welwyn Garden City, UK; 14Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
Disclosures: Matthew D. Galsky

• Research funding:
 - AstraZeneca, Bristol Myers Squibb, Dendreon, Genentech, Merck and Novartis

• Advisory board/consultant:
 - AstraZeneca, Basilea, Bristol Myers Squibb, Dragonfly, EMD Serono, Genentech, GlaxoSmithKline, Janssen, Merck, Numab, Pfizer, Rappta Therapeutics, Seattle Genetics and UroGen
Immunomodulatory effects may underlie favourable outcomes with cisplatin ± atezo vs carboplatin ± atezo in mUC

- Cisplatin, but not carboplatin, achieves durable control of mUC in a subset of patients\(^1\)
- Atezo + cisplatin-based chemo was associated with better efficacy than atezo + carboplatin-based chemo in an exploratory subset analysis from IMvigor130\(^2\)
- Together, these findings raise the hypothesis that cisplatin may be associated with specific favourable immunomodulatory effects

Phase III IMvigor130 study (N=1213)
- Locally advanced or metastatic UC
- No prior systemic therapy for mUC

OS by investigator's choice of platinum\(^2\)

<table>
<thead>
<tr>
<th></th>
<th>Arm A</th>
<th>Arm C</th>
</tr>
</thead>
<tbody>
<tr>
<td>mOS, mo</td>
<td>16.1</td>
<td>13.4</td>
</tr>
<tr>
<td>n</td>
<td>451</td>
<td>400</td>
</tr>
<tr>
<td>OS HR (95% CI)</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>0.73</td>
<td>0.91</td>
</tr>
</tbody>
</table>

- Favours Arm A (atezo + plt/gem)
- Favours Arm C (pbo + plt/gem)

Content of this presentation is copyrighted to and the responsibility of the author. Permission is required for re-use.

Effects of cisplatin ± atezolizumab on OS are most prominent in patients with PD-L1 IC–high tumours

IMvigor130: OS by PD-L1 status and chemo

<table>
<thead>
<tr>
<th>PD-L1 Status</th>
<th>Arm A: atezolizumab + cisplatin/gemcitabine</th>
<th>Arm C: placebo + cisplatin/gemcitabine</th>
<th>Arm C: placebo + carboplatin/gemcitabine</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC0/1</td>
<td>mOS: 19.5 months (NR)</td>
<td>mOS: 12.8 months</td>
<td>mOS: 13.0 months</td>
</tr>
<tr>
<td>IC2/3</td>
<td>mOS: 27.9 months</td>
<td>mOS: 14.0 months</td>
<td>mOS: 14.0 months</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.46 (0.25, 0.83)</td>
<td>0.51 (0.30, 0.86)</td>
<td>1.00 (0.71, 1.42)</td>
</tr>
</tbody>
</table>

PD-L1 expression on tumour-infiltrating immune cells

- IC0/1: PD-L1–expressing immune cells on <5% of the tumour area
- IC2/3: ≥5% of the tumour area

- Content of this presentation is copyrighted to and the responsibility of the author. Permission is required for re-use.

Does cisplatin vs carboplatin show evidence of immunogenic cell death?

Immunogenic cell death

- Chemotherapy
- Tumour
- PBMC

IMvigor130 PBMC analyses

<table>
<thead>
<tr>
<th></th>
<th>C1D1</th>
<th>C3D1</th>
<th>Total no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm A: atezo + cis/gem</td>
<td>14</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Arm A: atezo + carbo/gem</td>
<td>24</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>Arm C: pbo + cis/gem</td>
<td>17</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>Arm C: pbo + carbo/gem</td>
<td>16</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Total no.</td>
<td>71</td>
<td>71</td>
<td>142</td>
</tr>
</tbody>
</table>

- **scRNAseq**
- **No. of samples**

a Only patients with evaluable samples at both C1D1 and C3D1 are included.

b Includes gene set enrichment analysis (Hallmark pathways).

c Includes samples from an MIBC non-trial cohort¹,²

- **Neoadjuvant MIBC cohort**: To study cis-related changes in the tumour microenvironment, gene expression data from 113 paired pre-/post-neoadjuvant cis/gem-treated samples were also analysed.

Galsky M. IMvigor130 cisplatin biomarkers. Abstract 4107. https://bit.ly/3jB8jRR @MattGalsky | Content of this presentation is copyrighted to and the responsibility of the author. Permission is required for re-use.
Cisplatin vs carboplatin leads to gene expression changes suggestive of induction of innate and adaptive immunity

- **IMvigor130**: Cis- vs carbo-treated patients showed on-treatment enrichment of TNF-α signalling via NFκB, inflammatory response gene sets and interferon response gene sets across immune cell clusters

- **Neoadjuvant cohort**: TNFα signaling via NFκB was also enriched in paired tumour samples (post- vs pre-cis/gem)

Heatmaps include pathways significant in ≥3 cell types, with manual ordering (IMvigor130). Asterisks (*) in heatmap cells indicate significance defined by a false discovery rate <0.05. Ten cells per sample were required.
Conclusions

• In this exploratory analysis from IMvigor130, PD-L1 IC2/3 status was associated with longer OS in cisplatin- but not carboplatin-treated patients with mUC

• Cisplatin- vs carboplatin-based chemo was associated with increased innate and adaptive immune gene expression—both in circulating immune cells in patients with mUC enrolled in IMvigor130 and in the TME in a neoadjuvant cisplatin + gemcitabine–treated MIBC cohort

• These data suggest that cisplatin + gemcitabine enhances anti-tumour immunity, particularly when combined with atezolizumab (i.e., as seen when comparing IMvigor130 Arms A and C), potentially through the induction of immunogenic cell death

• These data may provide fundamental insights regarding the mechanisms underlying durable disease control achieved in the subset of patients with mUC treated with cisplatin-based chemo ± atezolizumab
Acknowledgements

• The patients and their families
• The investigators and clinical study sites
• This study is sponsored by F. Hoffmann-La Roche Ltd
• Medical writing assistance for this oral presentation was provided by Ashley J. Pratt, PhD, of Health Interactions and funded by F. Hoffmann-La Roche Ltd