Immunogenicity of emicizumab in people with hemophilia A: results from the HAVEN 1–4 studies

Ido Paz-Priel,1 Tiffany Chang,1 Elina Asikanius,2 Sammy Chebon,2 Thomas Emrich,3 Elena Fernandez,2 Peter Kuebler,1 Christophe Schmitt2

1Genentech, Inc., South San Francisco, CA, USA; 2F. Hoffmann-La Roche Ltd, Basel, Switzerland 3Roche Diagnostics GmbH, Penzberg, Germany
Emicizumab is a humanized, IgG4, bispecific monoclonal antibody. Bridges FIXa and FX to replace the function of FVIIIa in PwHA.

- Optimized structure to minimize development of anti-emicizumab antibodies.
- Half-life of ~30 days.
- Administered subcutaneously with high bioavailability.
- Demonstrated favorable safety and effective bleed prevention in adolescents/adults and pediatric PwHA with or without inhibitors (HAVEN 1–4).
- Approved in the US for PwHA of all ages, with or without FVIII inhibitors, with QW, Q2W, or Q4W dosing.

References:
Background: anti-drug antibodies (ADAs)

- Biological products may induce ADAs with variable clinical significance, e.g.
 - No clinical effect
 - Change in drug clearance rate
 - Reduced drug efficacy
 - Safety impact: hypersensitivity, infusion reaction, cross reaction with endogenous proteins

- In the emicizumab phase I/II study, four participants (4/18), treated at low dose levels, tested positive for ADAs without clinical impact\(^1\)

- Initial analyses of HAVEN studies did not identify any participants with ADAs

- Assay sensitivity has been improved by establishing a disease-specific threshold for ADA positivity according to guidelines\(^2,3\)

- The goal of the current analysis was to characterize the incidence and clinical significance of anti-emicizumab antibodies based on a revised, validated detection threshold

Methods: ADA definitions

ADA positive

Treatment induced: ADAs that develop *de novo* following drug exposure

Treatment boosted: ADAs detectable at baseline whose titer increases ≥4-fold following drug exposure

Transient ADA

ADA detected only at one sampling time point during treatment or follow-up observation period (excluding the last sampling time point)

Persistent ADA

ADA detected at two or more sampling time points during the treatment or follow-up observation period, or detected at the last sampling time point

Neutralizing ADAs

Inhibit or reduce *in vitro* the pharmacological activity by preventing target binding

Non-neutralizing ADAs

Bind the biological drug *in vitro* but do not inhibit its pharmacological activity

Methods: bioanalytical approach to anti-emicizumab ADA detection

- **ADA detection**
 - Bridging immunoassay, 1-step sandwich ELISA
 - ADA bridges the plate-bound biotin-emicizumab (emicizumab\textit{Bio}) and digoxigenin-labeled emicizumab (emicizumab\textit{Dig})
 - Emicizumab\textit{Bio}—ADA—emicizumab\textit{Dig} complex detected
 - Assay detects ≥100 ng/mL of positive control in presence of therapeutic concentration of emicizumab
 - Sensitivity in accordance with immunogenicity guidance

- Specificity confirmed by repeating the ELISA assay in the presence of excess emicizumab
 - Signal quenching indicates specific anti-emicizumab antibody

- A disease-specific threshold for ADA positivity was established based on baseline (pre-exposure) samples
- The revised cut point was applied to all plasma samples from HAVEN 1, 2, 3 and 4
 - ADA positive or negative status was reassigned to all HAVEN samples

ELISA, enzyme-linked immunosorbent assay
Methods: participants and sampling

- Analyses included all participants in the HAVEN studies who:
 - Received at least one dose of emicizumab and
 - Had at least one sample tested for ADA after exposure

- Per protocol, blood samples collected for ADA assessment at predetermined time points
 - Concurrent samples collected for PK and PD analyses

Adults and adolescents (HAVEN 1, 3, and 4)
- Pre-dose
- At Weeks 5, 9, 13, 17, 21, and 25
- Every 8–12 weeks thereafter

Children (HAVEN 2)
Reduced sampling due to blood volume constraints
- Pre-dose
- At Weeks 5, 17, 33, and 49
- Every 12 weeks thereafter

For participants who discontinue: 24 weeks after last dose

PD, pharmacodynamic; PK, pharmacokinetic
Results: ADAs were observed in 3.5% of participants across HAVEN studies

- Overall, **14/398** (3.5%, 95% CI 1.9–5.8) participants tested positive for ADAs

<table>
<thead>
<tr>
<th></th>
<th>HAVEN 1</th>
<th>HAVEN 2</th>
<th>HAVEN 3</th>
<th>HAVEN 4</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants exposed to emicizumab</td>
<td>112</td>
<td>88</td>
<td>151</td>
<td>48</td>
<td>399</td>
</tr>
<tr>
<td>≥1 post-baseline assessment, n</td>
<td>111</td>
<td>88</td>
<td>151</td>
<td>48</td>
<td>398</td>
</tr>
<tr>
<td>Median duration of exposure, weeks (IQR)</td>
<td>91.1</td>
<td>53.1</td>
<td>50.1</td>
<td>44.1</td>
<td>55.1</td>
</tr>
<tr>
<td>ADA negative, n (%)</td>
<td>109 (98.2)</td>
<td>84 (95.5)</td>
<td>145 (96.0)</td>
<td>46 (95.8)</td>
<td>384 (96.5)</td>
</tr>
<tr>
<td>ADA positive, n (%)</td>
<td>Treatment induced</td>
<td>2 (1.8)</td>
<td>4 (4.5)</td>
<td>5 (3.3)</td>
<td>2 (4.2)</td>
</tr>
<tr>
<td></td>
<td>Treatment boosted</td>
<td>0</td>
<td>0</td>
<td>1 (0.7)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>2 (1.8)</td>
<td>4 (4.5)</td>
<td>6 (4.0)</td>
<td>2 (4.2)</td>
</tr>
</tbody>
</table>

CI, confidence interval; IQR, interquartile range
Results: ADAs were frequently transient

Transitory ADAs were detected in 7/14 ADA-positive participants

<table>
<thead>
<tr>
<th></th>
<th>HAVEN 1</th>
<th>HAVEN 2</th>
<th>HAVEN 3</th>
<th>HAVEN 4</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1 post-baseline assessment, n</td>
<td>111</td>
<td>88</td>
<td>151</td>
<td>48</td>
<td>398</td>
</tr>
<tr>
<td>1 positive, n (%)</td>
<td>0</td>
<td>2 (2.3)</td>
<td>4 (2.6)</td>
<td>1 (2.1)</td>
<td>7 (1.8)</td>
</tr>
<tr>
<td>≥2 positive, n (%)</td>
<td>2 (1.8)</td>
<td>2 (2.3)</td>
<td>2 (1.3)</td>
<td>1 (2.1)</td>
<td>7 (1.8)</td>
</tr>
<tr>
<td>All</td>
<td>2 (1.8)</td>
<td>4 (4.5)</td>
<td>6 (4.0)</td>
<td>2 (4.2)</td>
<td>14 (3.5)</td>
</tr>
</tbody>
</table>

ADA detected only at one sampling time point during treatment or follow-up observation period (excluding the last sampling time point)
Results: ADAs with neutralizing potential were observed in <1% of the study population

- In the absence of a neutralizing antibody assay, PK and PD profiles were used to identify ADAs with neutralizing potential
 - ADAs with neutralizing potential were defined as ADAs associated with decline in PK and corresponding reduced PD effects

- ADAs with neutralizing potential were identified in 3/398 (0.75%, 95% CI 0.2–2.2) participants
 - One participant discontinued due to a loss of efficacy
 - One participant remained on study without any bleed for 48 weeks since ADA detection
 - One participant discontinued due to personal preference

- Importantly, ADAs without neutralizing potential were not associated with reduced efficacy
Results: illustrative profiles of ADAs with neutralizing potential

- Typical participant (no ADA detected)

- ADAs detected at Week 5
 - Sharp decline in emicizumab concentration and reported FVIII activity
 - Up-titration to 3 mg/kg QW at Week 9 without improvement in PK or PD was observed
 - Discontinued from the study due to lack of efficacy and resumed previous treatment

- ADAs detected at Week 33
 - Gradual decline in emicizumab concentrations to ~15 µg/mL with a corresponding decline in reported FVIII activity
 - Continues emicizumab at original dose without a bleed for 48 weeks since ADA detection

*Sample confirmed positive after initial snapshot (data cut-off: 30 April 2018)
Results: most ADAs were detected early

- Duration of exposure was >36 weeks for 88.5% of patients (N=398)
- ADAs were detected between 5–33 weeks on study
 - Seven participants before Week 14
 - Six participants between Week 14–25
 - One participant after Week 25
Results: the presence of ADAs did not impact safety

- The safety profile of the 14 participants who tested positive for ADAs was similar to that of patients without ADAs
 - ADAs did not affect the frequency or type of adverse events
 - No cases of anaphylaxis or hypersensitivity occurred
 - No events indicative of potential immune complex deposition were observed
 - The frequency or severity of injection-site reactions did not increase following development of ADAs
- The safety profile of the 14 participants who tested positive for ADAs did not change after the detection of ADAs
- Anti-emicizumab ADAs do not cross-react with endogenous proteins
 - ADAs did not affect FIX or FX antigen levels
 - ADAs were not associated with development of FVIII inhibitors
Conclusions

- Emicizumab treatment is associated with a low rate of ADA development (14/398 participants, 3.5%), as expected for a humanized monoclonal antibody.
- ADAs with neutralizing potential were observed in <1% of participants.
- Nearly all ADAs were detected in the first 6 months of exposure to emicizumab.
- The presence of ADAs was not associated with a change in safety profile, anaphylaxis, or hypersensitivity reaction.
- In itself, detection of ADAs has limited impact on clinical management, suggesting that routine surveillance is not warranted.
The authors would like to thank:

- Study participants and their families
- Study investigators and site personnel

- S. Acharya (USA), N. Andersson (Sweden), B. Antmen (Turkey), R. Baker (Australia), K. Batt (USA), S. Bonanad Boix (Spain), W. Bujan (Costa Rica), M. Callaghan (USA), G. Castaman (Italy), C-Y. Chang (Taiwan), P. Chowdary (UK), P. Collins (UK), S.E. Croteau (USA), G. Dolan (UK), M.A. Escobar (USA), C. Escuriola-Ettingshausen (Germany), J. Estepp (USA), M.E. Eyster (USA), L. Frenzel (France), T. Fuji (Japan), K. Fukutake (Japan), C. Garcia (Costa Rica), A. Gierzmasz (USA), J. Gill (USA), A. Harroche (France), A. Hellmann (Poland), C. Hermans (Belgium), S. Higasa (Japan), K. Holstein (Germany), Y. Horikoshi (Japan), M. Hus (Poland), A. Ishiguro (Japan), T. Ito (Japan), V. Jiménez-Yuste (Spain), K. Kavalki (Turkey), D.M. Keeling (UK), C. Kempton (USA), C. Kessler (USA), N. Key (USA), L. Khoo (Australia), J.S. Kim (Republic of Korea), C. Knoll (USA), R. Kruse-Jarres (USA), T. Lambert (France), R. Liesner (UK), J. Mahlangu (South Africa), M.E. Mancuso (Italy), T. Matsushita (Japan), C. McGuinn (USA), S. McRae (Australia), S. Meunier (France), C. Negrier (France), Y. Nishida (Japan), R. Núñez (Spain), P. Ockelford (New Zealand), N. O Connell (Ireland), J. Oldenburg (Germany), K. Oshida (Japan), A. Parnes (USA), K. Peerlinck (Belgium), S. Pipe (USA), M. Podolak-Dawidziak (Poland), D. Quon (USA), A. Rajasekhar (USA), M. Recht (USA), N. Rodriguez (USA), C. Rothschild (France), J. Rowell (Australia), E. Santagostino (Italy), A. Shapiro (USA), T. Sato (Japan), M-C. Shen (Taiwan), M. Shima (Japan), R. Sidonio (USA), M. Simpson (USA), A. Soni (USA), S. Susen (France), T. Suzuki (Japan), M. Taki (Japan), T. Teshima (Japan), H. Tran (Australia), W. Tsay (Taiwan), J-D. Wang (Taiwan), M. Wang (USA), J. Windyga (Poland), T. Wozny (Poland), G. Young (USA), B. Zulfikar (Turkey)

- This study was co-sponsored by F. Hoffmann-La Roche Ltd and Chugai Pharmaceutical Co., Ltd
- Writing assistance was provided by Maria Alfaradhi of Gardiner-Caldwell Communications, and funded by F. Hoffmann-La Roche Ltd