Comparison of digital vs manual PD-L1 tumour cell scoring on SP263-stained whole imaging slides from IMpower110

Roy S. Herbst,1 Daniel Ruderman,2 Jake Conway,3 Hen Prizant,2 Stephanie Hennek,3 John Shamshoian,3 John Abel,3 Michael Montalto,3 Andy Beck,3 Ilan Wapinski,3 Luciana Molinero,2 Reena Amin,2 Tien Hoang,2 Marcus Ballinger,2 Filippo de Marinis,4 Giuseppe Giaccone,5 Jacek Jassem,6 Jennifer Giltnane,2 Minu K. Srivastava,2 David Spigel7

1Yale School of Medicine, New Haven, CT, USA; 2Genentech Inc, South San Francisco, CA, USA; 3PathAI, Inc, Boston, MA, USA; 4European Institute of Oncology, Milan, Italy; 5Weill Cornell Medical Center, New York, NY, USA; 6Medical University of Gdańsk, Gdańsk, Poland; 7Sarah Cannon Research Institute, Nashville, TN, USA
Background

• Pathologist-assessed PD-L1 expression has been shown to be predictive of response to anti–PD-L1/PD-1 therapies but the ability to improve such assays may be fundamentally limited by known inter-observer variability\(^1\)

• The use of artificial intelligence (AI) tools and digital pathology may address this challenge\(^1\)

• We applied a clone-agnostic model for AI-based measurement of PD-L1 (AIM-PD-L1; PathAI, Inc)\(^2\) for exploratory analysis in the Phase III IMpower110 study (NCT02409342)

• Digital and manual SP263 PD-L1 tumour cell (TC) scoring was compared to evaluate digital pathology as an unbiased, automated method to identify patients with NSCLC benefiting from atezolizumab

• Human interpretable features (HIFs) of the tumour microenvironment (TME) were also quantified from SP263-stained slides and evaluated as novel candidate biomarkers for survival benefit

IMpower110 study design

- IMpower110 was a randomised, open-label, Phase III study of first-line atezolizumab vs chemotherapy in PD-L1+ (PD-L1 ≥1% on TC or tumour-infiltrating immune cell [IC] by SP142) metastatic NSCLC.¹

- Atezolizumab showed statistically significant OS improvement vs chemotherapy in the high PD-L1 expression (PD-L1 ≥50% on TC or ≥10% on IC) wild-type population,¹ leading to approval of atezolizumab monotherapy for patients with metastatic NSCLC whose tumours have high PD-L1 expression with no EGFR or ALK alterations.

- The dataset for AI-based pathology analysis included 509 slides: 350 non-squamous, 123 squamous and 36 of indeterminate histology.

- Primary endpoint: OS in the wild-type population.

- Key secondary endpoints: investigator-assessed PFS, ORR and DOR (per RECIST v1.1)

IC, tumour-infiltrating immune cells; nsq, non-squamous; PD, progressive disease; q3w, every 3 weeks; R, randomised; sq, squamous. ¹ VENTANA SP142 assay. ² TC1/2/3 and any IC vs TCO and IC1/2/3. ³ Cisplatin 75 mg/m² or carboplatin area under the curve (AUC) 6 + pemetrexed 500 mg/m² q3w. ⁴ Cisplatin 75 mg/m² + gemcitabine 1250 mg/m² or carboplatin AUC 5 + gemcitabine 1000 mg/m² q3w. ⁵ Excludes patients with EGFR+ and/or ALK+ NSCLC. ¹ Herbst RS, et al. N Engl J Med 2020;383(14):1328-1339.
• AIM PD-L1 is a clone-agnostic machine learning model for the quantification of PD-L1 in NSCLC\(^1\)
• AIM-PD-L1 was used on SP263-stained slides for continuous digital PD-L1 scoring and survival analysis
• Survival analysis was performed for PD-L1+ populations, comparing patients treated with atezolizumab vs chemotherapy

121 of 122 patients who were manually scored as PD-L1− (<1%) on TC by SP263 were PD-L1+ (≥1%) only on IC by SP142.

Concordance between manual and digital scoring was high at the 50% cutoff (OPA: 90%) but suboptimal at the 1% cutoff (OPA: 78%).

Digital scoring identified 114 (22%) and 22 (4%) additional patients with PD-L1+ NSCLC at the TC ≥1% and ≥50% cutoffs, respectively, compared with manual scoring.

Pathologist review of discrepant cases noted various causes of disagreement: model overcalled positive cancer cells with cytoplasmic but incomplete membrane staining, model confusion with positive immune cells and cases where manual scores were incorrect.

Presented by: Roy S. Herbst
IMpower110 Manual vs Digital PD-L1 Scoring

Digital

<table>
<thead>
<tr>
<th></th>
<th><1%</th>
<th>≥1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>8 (2%)</td>
<td>114 (22%)</td>
</tr>
<tr>
<td>≥1%</td>
<td>0 (0%)</td>
<td>387 (76%)</td>
</tr>
</tbody>
</table>

Manual

<table>
<thead>
<tr>
<th></th>
<th><50%</th>
<th>≥50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>209 (41%)</td>
<td>36 (7%)</td>
</tr>
<tr>
<td>≥50%</td>
<td>14 (3%)</td>
<td>250 (49%)</td>
</tr>
</tbody>
</table>

PPA: 100%
NPA: 7%
OPA: 78%

PPA: 95%
NPA: 85%
OPA: 90%

CCC, concordance correlation coefficient; NPA, negative percentage agreement; OPA, overall percentage agreement; PPA, positive percentage agreement; r, Pearson coefficient.

36 patients that are digital high positive/manual negative – 14 patients that are digital negative high/manual high positive.
Despite differences in PD-L1+ prevalence, OS and PFS were similar for manual and digital scoring at both cutoffs\(^a\)

<table>
<thead>
<tr>
<th>TC (\geq 1%)</th>
<th>Total, n (%)</th>
<th>Atezolizumab, n</th>
<th>Chemotherapy, n</th>
<th>HR (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual OS</td>
<td>387 (76)</td>
<td>205</td>
<td>182</td>
<td>0.84 (0.64, 1.08)</td>
<td>0.18</td>
</tr>
<tr>
<td>Digital OS</td>
<td>501 (98)</td>
<td>260</td>
<td>241</td>
<td>0.85 (0.68, 1.05)</td>
<td>0.16</td>
</tr>
<tr>
<td>Manual PFS</td>
<td>387 (76)</td>
<td>205</td>
<td>182</td>
<td>0.72 (0.57, 0.9)</td>
<td><0.005</td>
</tr>
<tr>
<td>Digital PFS</td>
<td>501 (98)</td>
<td>260</td>
<td>241</td>
<td>0.74 (0.61, 0.88)</td>
<td><0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TC (\geq 50%)</th>
<th>Total, n (%)</th>
<th>Atezolizumab, n</th>
<th>Chemotherapy, n</th>
<th>HR (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual OS</td>
<td>264 (52)</td>
<td>144</td>
<td>120</td>
<td>0.83 (0.62, 1.13)</td>
<td>0.24</td>
</tr>
<tr>
<td>Digital OS</td>
<td>286 (56)</td>
<td>158</td>
<td>128</td>
<td>0.83 (0.62, 1.11)</td>
<td>0.2</td>
</tr>
<tr>
<td>Manual PFS</td>
<td>264 (52)</td>
<td>144</td>
<td>120</td>
<td>0.66 (0.5, 0.85)</td>
<td><0.005</td>
</tr>
<tr>
<td>Digital PFS</td>
<td>286 (56)</td>
<td>158</td>
<td>128</td>
<td>0.68 (0.53, 0.87)</td>
<td><0.005</td>
</tr>
</tbody>
</table>

\(^a\) All biomarker-evaluable cases. There was an increase in prevalence by 114 (22%) and 22 (4%) patients at the TC \(\geq 1\%\) and TC \(\geq 50\%\) cutoffs by digital and manual scoring, respectively.
Survival benefit for atezolizumab vs chemotherapy in patients with PD-L1+ (TC ≥1%) tumours by digital scoring only (TC <1% by manual scoring)

PFS in PD-L1 TC ≥1% by digital scoring only

- PFS HR, 0.79 (0.53, 1.18)
- P = 0.24

OS in PD-L1 TC ≥1% by digital scoring only

- OS HR, 0.88 (0.54, 1.41)
- P = 0.58

No. at risk

- Atezolizumab: 55, 22, 8, 2, 1
- Chemotherapy: 59, 14, 3, 0, 0

No. at risk

- Atezolizumab: 55, 40, 26, 7, 2
- Chemotherapy: 59, 42, 24, 4, 0
AI-based quantification of the TME and PD-L1 expression enables biomarker exploration beyond TC score

Exploratory analysis for candidate biomarkers was conducted by searching for features associated with survival.

One feature was identified as nominally significant ($P=0.03$, FDR=0.21; 78 comparisons) with survival benefit for squamous samples:

- Density of PD-L1+ TILs for patients with squamous tumours in the cancer epithelium.

FDR, false discovery rate; TIL, tumour-infiltrating lymphocyte. Figure: Baxi V, et al. SITC 2019. Oral O65.
PFS by histology in patients with high (above median) PD-L1+ TILs in cancer epithelium

- TILs in the TME may contribute to differences in survival benefit in histology subtypes
- Although improved PFS was also observed in patients with non-squamous disease and a high density of PD-L1+ TILs in the cancer epithelium, benefit was greater in the squamous population
Conclusions

- In the exploratory analysis comparing manual and digital PD-L1 scoring in SP263-stained slides from IMpower110, AIM-PD-L1 scoring found 22% and 4% greater PD-L1+ prevalence at TC ≥1% and ≥50%, respectively, relative to manual scoring.

- AIM-PD-L1 scoring was as effective as manual scoring at predicting survival outcomes.

- Based on HIF analysis, improved PFS was observed in patients with a high density of PD-L1+ TILs in the cancer epithelium, with higher benefit in those with squamous vs non-squamous histology.

- The results of this analysis further support the potential for digital pathology to optimise PD-L1 scoring for clinical trial conduct.
Acknowledgements

- The patients and their families
- The investigators and clinical study sites
- This study is sponsored by F. Hoffmann-La Roche Ltd
- Medical writing assistance was provided by Kia C. E. Walcott, PhD, of Health Interactions, and funded by F. Hoffmann-La Roche Ltd